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SUMMARY Energy consumption has become an important
design consideration in modern processors. Therefore, microar-
chitects should consider energy consumption, together with per-
formance, when designing the cache architecture, since it is a
major power consumer in a processor. This paper proposes an
accurate and energy-efficient way determination (instead of pre-
diction) technique for reducing energy consumption in the in-
struction cache by using early tag matching. Way prediction has
been considered as one of the most efficient techniques to reduce
energy consumption in the caches. The proposed scheme allows
early tag matching for accurate way determination. With this
feature, our scheme drastically improves the way determination
accuracy compared to the previous way prediction techniques.
To enable the early tag matching, the tag lookup stage is in-
serted prior to the fetch stage in the pipeline architecture. The
tag matching is performed during the tag lookup stage, and then
only one way is accessed during the fetch stage, leading to good
energy efficiency. Simulation results show that the proposed tech-
nique reduces the energy consumption in the instruction cache by
55.1% on average. Moreover, our technique guarantees negligible
performance degradation by overlapping two pipeline stages in
case of branch misprediction.
key words: Low power design, Instruction Cache, Way predic-

tion, Tag matching

1. Introduction

In modern processors, a significant fraction of total en-
ergy is consumed in instruction fetches. Brooks et al.
found that instruction fetch accounts for 22.2% of the
energy consumed in the Intel Pentium Pro processor [4].
Most of the energy for instruction fetch is consumed
by the instruction cache. For example, the instruction
cache is responsible for 27% of the energy consumed in
the whole SA-110 [12]. For this reason, energy as well
as performance should be simultaneously considered for
instruction fetch design.

A number of architecture-level approaches have
been introduced to improve the energy efficiency of the
instruction cache. Bellas et al. proposed a technique
that uses an additional mini cache located between the
instruction cache and the CPU core in order to re-
duce signal switching activities and dissipated energy
with the help of compilers [3]. Selective-way cache pro-
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vides the ability to disable a set of the ways in a set-
associative cache during the periods of modest cache ac-
tivities to reduce energy consumption, whereas the full
cache may remain operational for more cache-intensive
periods [1]. Partitioned instruction cache reduces the
size of cache to be activated by using a prediction tech-
nique, leading to good energy efficiency [10][11].

Modern microprocessors generally employ set-
associative instruction caches to achieve low miss rates
by reducing conflict misses. However, in the perspec-
tive of power consumption, set associative caches are
inferior to direct-mapped caches, since all the ways in
a set should be activated in parallel when the cache
is accessed. For example, 4-way set-associative caches
precharge and read four ways but select only one of
them on a cache hit, wasting energy for three irrelevant
ways. However, for better performance, set-associative
caches are popularly used not only in high-performance
processors but also in embedded processors such as
ARM-family processors [15].

To improve the energy efficiency of set-associative
caches, way prediction techniques have been proposed
[7][8][13][14]. However, previous way prediction tech-
niques show performance loss or little energy reduction
due to the low prediction accuracy. In this paper, we
propose a simple and accurate way determination tech-
nique by inserting an extra pipeline (stage tag lookup
stage for way determination) prior to the fetch stage.
In the conventional pipeline architecture, the branch
prediction is performed prior to the fetch stage. In our
scheme, the tag lookup stage is inserted between the
branch prediction stage and the fetch stage for the way
determination. The inserted tag lookup stage does not
require additional hardware logic, but it is moved from
the fetch stage.

In the previous way prediction techniques, the tag
matching and instruction fetch are performed in par-
allel during the fetch stage. However, the proposed
technique divides the fetch stage into two consecutive
stages (tag lookup and fetch stage). The first stage
(tag lookup stage) performs only tag matching for way
determination, and the second stage (fetch stage) per-
forms the instruction fetch. Therefore, the tag match-
ing and the instruction fetch are performed sequentially
in the proposed architecture. This seems to be similar
to the serial cache[14]. However, the performance loss is
much less, since the proposed technique can hide addi-



2
Submission to DELTA 2008 Conference

tional branch misprediction penalties from the inserted
tag lookup stage except the case when the branch tar-
get is mispredicted by BTB (Branch Target Buffer).
(Please note that branch prediction penalty is propor-
tional to the pipeline length. Details are explained in
Section 3.2.) The proposed technique reduces the en-
ergy consumption in the instruction cache significantly
by accessing only a single way in the cache thanks to
early tag matching.

The rest of this paper is organized as follows. Sec-
tion 2 presents related research. Section 3 describes the
proposed way determination technique and shows the
differences from the Serial Cache. Section 4 discusses
our evaluation methodology and shows detailed evalu-
ation results followed by the conclusions in Section 5.

2. Background

Caches consume significant portion of total processor
energy consumption, and the cache access is known as
one of the most timing-critical paths in most proces-
sors. For this reason, cache architecture is very impor-
tant when designing processor architecture. According
to the results obtained from CACTI model [16], shown
in Table 1, the normalized per-access energy consump-
tion of the cache increases as the degree of associativ-
ity increases. Moreover, a direct-mapped cache shows
the best access latency. However, the direct-mapped
cache shows the worst hit rates due to frequent conflict
misses. A fully-associative cache provides the highest
hit rates, but shows the worst energy efficiency and ac-
cess latency.

The alternative is a set-associative cache for trade-
off between hit rates and access latency, which is used
in most processor architectures. In a set-associative
cache, multiple cache lines with same index in a set
are accessed simultaneously but at most one of them is
fetched, resulting in unnessary energy consumption. To
reduce the dynamic energy consumed by multiple cache
line accesses, way prediction techniques have been pro-
posed. Way predicting set-associative caches initially
access a single tag and its corresponding data array
based on their prediction mechanism, and access the
other arrays only when the initial access does not re-
sult in a match, which leads to less energy consumption
at the expense of longer access time in case of a way
misprediction.

In the past, processor designers hesitated to adopt
the way prediction schemes due to their low prediction
accuracy, resulting in significant performance degrada-
tion [9]. To overcome this weakness, there have been

Table 1 Normalized per-access energy consumption and nor-
malized access latency according to each cache model

1-way 2-way 4-way 8-way
Per-access energy 1 1.340 1.977 3.205

Access latency 1 1.162 1.166 1.225

many studies on the way prediction to improve the pre-
diction accuracy. Inoue et al. adopted an MRU algo-
rithm for way prediction and showed reduced cache ac-
cess time by improving the prediction accuracy [7][8].
Powell et al. examined the impact of the way predic-
tion on the energy consumption of the instruction cache
[13]. For the precise way prediction, they associated a
way prediction with the PC (Program Counter) of the
previous instruction address to utilize the relation be-
tween the branch predictor and the instruction cache.
However, the way prediction is performed based on the
lastly accessed history in their technique, resulting in a
strong dependency on the access history. Reinman et
al. compared both performance and energy efficiency
of a serial cache, where the tag matching and the ac-
cess to the data are performed sequentially, to those of
a cache with the way predictor [14]. The performance
of the serial cache and that of the cache with the way
predictor show little difference in terms of performance.
Moreover, the serial cache requires low hardware com-
plexity compared to the cache with a way predictor.
However, their architectural parameters in the simula-
tions were quite different from modern microprocessors
(with 8 instruction fetches/cycle, average IPC is only
around 1.5). Hence the impact of the fetch logic on the
performance was severely underestimated.

Previous way prediction techniques have a com-
mon weak point such that the prediction accuracy is
heavily dependent on the access history and the penalty
of way misprediction is not marginal. Moreover, when
the way is mispredicted, all the ways should be re-
accessed, resulting in significant energy consumption.
On the other hand, our method performs the way de-
termination by accessing the tag array prior to the data
array, leading to the best accuracy compared to the
previous methods. Our main idea(inserting additional
pipeline stage) is similar to [5] that one of us (authors)
proposed, but our goal in this paper is to reduce the
way misprediction whereas the goal in [5] is to reduce
leakage energy.

3. Proposed Way Determination Technique

3.1 Proposed Pipeline Architecture

We propose a simple and accurate way determination
scheme to overcome the shortcomings of previous way
prediction techniques by breaking the dependency on
the access history. Our key idea is to insert an ex-
tra stage, which is called tag lookup stage, between
branch prediction stage and fetch stage. During the
tag lookup stage, the way is determined by early tag
matching. Fig.1(a) shows the conventional pipeline ar-
chitecture, and Fig.1(b) shows the proposed pipeline
architecture with the tag lookup stage to support our
scheme. Only the difference of two architectures is the
additional tag lookup stage between branch prediction
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Fig. 2 Pipeline of the proposed way determination when there
is no branch misprediction

stage and fetch stage.
As shown in Fig.1(b), in our architecture, where

the tag lookup stage is inserted, the branch predictor
is accessed one cycle earlier than in the conventional
pipeline architecture. Note that there is no accu-
racy decrease in the branch prediction, since
the structure of the branch predictor is not
changed. By inserting the tag lookup stage, we can
compare the predicted instruction address with a set of
tags during the tag lookup stage, then the way deter-
mined is always correct.

Fig.2 depicts the pipeline of the proposed archi-
tecture when there is no branch misprediction. The
branch prediction stage is moved to one cycle earlier,
where the tag matching can be done before the access
to the instruction cache (data arrays). Therefore, only
one predicted way (data array) is accessed during the
fetch stage. Note that there is no way misprediction in
the proposed architecture. When the tag is matched
during the tag lookup stage, the predicted way is al-
ways correct. When the tag is not matched during the

tag lookup stage, the instruction cache does not include
the instruction (instruction cache miss). In the previ-
ous way prediction technique, a cache line is accessed
even in the case of a cache miss. On the contrary, in
the proposed way predictor, the instruction cache (data
array) is not accessed on a cache miss, since the cache
miss can be determined prior to the fetch stage by using
early tag matching.

3.2 Misprediction Recovery: Difference from the Se-
rial Cache

Generally speaking, additional pipeline stage incurs
another branch misprediction penalty. Thus, the se-
rial cache should suffer additional branch mispredic-
tion penalty. In the proposed technique, however,
this extra penalty is almost hidden. Fig. 3 shows
the case that the branch misprediction occurs, where
the instruction n is the mispredicted instruction. In
the conventional pipeline architecture, the instruction
cache is accessed for instruction n + 4, right after the
writeback stage of the mispredicted branch instruction
(instruction n). The reason is that an effective ad-
dress is generated at the writeback stage since it cannot
be done in the timing-critical execution stage. This is
true in most processors such as Intel-family processors
and ARM-family processors. In the proposed scheme,
in case of branch misprediction (excluding target mis-
prediction), the tag matching can be hidden, since it
is overlapped with the address generation, as shown
in Fig.3(b). The key observation is that it is possi-
ble to determine the alternative path in parallel with
branch resolution. For predicted-taken branches,
the not-taken path must be woken up (not-taken
address is usually carried with the ongoing in-
struction). For predicted not-taken branches,
the taken target is needed. This can either be
carried with the instruction or resides in some
dedicated storage. This capability must exist anyway
in current microprocessors because every taken branch
in flight must be able to check whether the target ad-
dress obtained from the BTB is correct or not. Note
that the taken target is available at the branch pre-
diction stage regardless of predicted direction, because
the direction predictor and target predictor are usually
consulted in parallel. Since the additional penalty
can be hidden in Fig.3(b), there is no differ-
ence between the branch prediction penalty of
the conventional architecture and that of the
proposed architecture. In other words, when
the branch misprediction occurs, our architec-
ture does not suffer from an additional penalty.
This feature differentiates our technique from
the serial cache [14] where the branch mispre-
diction penalty is always increased by 1-cycle.
There is only one case when the additional penalty is
suffered - branch ”target” misprediction. Additional
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penalty cannot be avoided in this case. However, the
system performance degradation due to branch target
misprediction is expected to be little in the proposed
architecture, because the branch target misprediction
occurs with very low probability.

4. Experiments

4.1 Experimental Environments

In order to evaluate the proposed way determination
technique, we compared our technique to the conven-
tional technique where there is no way prediction. Also,
we compared it to the previous way prediction tech-
nique, similar to [13], which is known as one of the
most accurate way prediction techniques. The serial
cache that has a two-cycle fetch stage is naturally in-
ferior to any of way predictors that have a one-cycle
fetch stage in the perspective of performance. In terms
of energy consumption, the serial cache is almost same
as the proposed technique. Thus, we do not include the
results of the serial cache in this paper.

Table 2 shows the notations for energy models.
The number of accesses to the instruction cache con-
sists of the number of correct way determination (or
prediction) and twice the number of way misprediction,
shown in equation (1). In case of way misprediction,
the instruction cache should be re-accessed to fetch the
correct instruction. Note that there is no way mispre-
diction in our architecture. The energy consumption
of the proposed technique is shown in equation (2). In
our technique, the instruction cache does not have to be
accessed on an instruction cache miss, since all the tags
in a set are looked up earlier and thus cache hit/miss
is determined before the instruction cache is accessed.
On the other hand, the instruction cache should be
accessed in the previous technique regardless of cache
hit/miss, since the tag cannot be matched prior to the
fetch stage. Even worse, the previous technique should

Table 2 Notations for energy models

Notation Meaning

NI cache Number of instruction cache accesses
Ncorrect prediction Number of correct way predictions
Nmisprediction Number of way mispredictions
Ncache miss Number of instruction cache misses
Eproposed Total energy of the proposed technique
Eprevious Total energy of the previous technique
E1 way Energy consumed in 1 way access

in the instruction cache

E(N−1) way Energy consumed in (N-1) ways access
in the instruction cache

re-access the instruction cache in case of way mispre-
diction, which consumes energy to access 1 way and
(N-1) ways (‘N’ denotes cache associativity), shown in
equation (3).

NI cache = Ncorrect prediction + 2 ∗ Nmisprediction (1)

Eproposed = E1 way ∗ (NI cache − Ncache miss) (2)

Eprevious = E1 way ∗ Ncorrect prediction+

(E1 way +E(N−1) way)∗Nmisprediction (3)

We extended Simplescalar 3.0 [2] to evaluate en-
ergy and performance. The processor parameters and
energy parameters used in simulations are shown in Ta-
ble 3. The energy parameters are obtained from Cacti
4.0 Beta [16], based on the 70nm/0.9V technology. We
simulated all the applications in SPEC CPU2000 suite
[17].

4.2 Impacts on Performance

Fig.4 depicts the ratio which represents the probabil-
ity that the way is correctly determined without any
penalty. Accordingly, the case when the way determi-
nation is delayed due to branch target misprediction, is
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Table 3 Simulation parameters

Processor Parameter Value

Instruction Window 64 RUU, 32 LSQ
Fetch/Decode/Issue/Commit Width 4 instructions/cycle
Branch Predictor Gshare/4K, 1024-entry 4-way BTB
INT FU 4 ALUs, 1 Multi-div
FP FU 4 ALUs, 1 Multi-div
Instruction/Data TLB 128/32 entries in each way, 8KB page size,

fully associative, LRU, 1-cycle latency, 28 cycle miss penalty
L1 I-Cache 16KB, 4way, 32B blocks, 1 cycle latency, 4KB sub bank size
L1 D-Cache 16KB, 4way, 32B blocks, 1 cycle latency
L2 Unified Cache 512KB, 4way, 64B blocks, LRU, 12 cycle latency

Energy Parameter Value

Dynamic Energy/1-Way Tag Access 14.23 pJ

Dynamic Energy/4-Way Tag Access 28.10 pJ
Dynamic Energy/1-Way Data Access 14.51 pJ
Dynamic Energy/4-way Data Access 35.55 pJ

the reason for the penalty in the proposed technique.
For this reason, the ratio of our technique is lower than
100%. As shown in Fig. 4, the average ratio of the pre-
vious technique and that of the proposed technique are
88.8% and 98.8%, respectively. The proposed technique
consistently shows higher ratio in all the applications,
since the proposed technique determines the way by us-
ing early tag matching, which does not depend on the
accuracy of a dedicated way predictor. The previous
way prediction, which utilizes the access history to pre-
dict the way, is highly dependent on the application
features, resulting in inconsistent correct way predic-
tion ratio.

As the ratio becomes higher, the performance loss
becomes less. Fig.5 represents the execution time nor-
malized to the conventional cache that allows all the
ways to be accessed (no way prediction). In some ap-
plications, the performance degradation of the previous
technique is more than 4%. On average, the previous
way prediction technique increases the execution time
by about 1%, whereas the proposed technique does only
negligible increase (0.07%). Note that even 1% perfor-
mance degradation in the processor may incur signifi-
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Fig. 5 Execution time, normalized to the conventional instruc-
tion cache where there is no way prediction
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Fig. 6 Branch prediction accuracy

cant system-wide energy overhead.
The branch prediction accuracy should be high

enough to support the efficiency of the proposed tech-
nique. Fig.6 shows the branch prediction accuracy for
each application. For example, in perlbmk, the perfor-
mance loss of the proposed technique is 2.0% (Fig.5),
since the branch prediction accuracy is as low as 79.3%
(Fig.6). In the other applications, however, the branch
prediction accuracy is at least more than 86.5%, re-
sulting in negligible performance loss in the proposed
technique.

4.3 Energy Consumption

Fig.7 depicts the energy consumption in the instruc-
tion cache (tag and data arrays). The proposed tech-
nique reduces the energy consumption in the instruc-
tion cache by 55.1% on average compared to that with
no way prediction technique, whereas the previous tech-
nique reduces 44.6%. In the previous way predic-
tion technique, only one way of the instruction cache
(tag and data arrays) is accessed at first, but the tag
and data arrays of the instruction cache should be re-
accessed simultaneously when the way misprediction



6
Submission to DELTA 2008 Conference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b
z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl
b
m

k

tw
o
lf

v
o
rt
e
x

v
p
r

IN
T
 a

v
g

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri
d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

F
P
 a

v
g

a
v
g

Applications

N
o
rm

a
li
z
e
d
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n

Previous Technique Proposed Technique

Fig. 7 Energy consumption, normalized to the conventional
cache where all the ways in a set are accessed

occurs. On the other hand, in the proposed technique,
all the ways of the tag arrays are accessed during the
tag lookup stage, and only a single predicted way of the
data arrays is accessed during the fetch stage. Hence,
there is no case that all the ways of the data arrays are
accessed in our architecture, which is a near-optimal so-
lution. Even in case of branch target misprediction, the
energy consumption is hardly affected, though there is
one-cycle penalty.

Moreover, our technique reduces more energy con-
sumption in case that a cache miss happens, because
the instruction cache miss is determined (tag lookup
stage) before the instruction cache (data) is accessed
(fetch stage).

5. Conclusions

We proposed an accurate and energy-efficient way de-
termination technique for instruction caches, leading to
the significant energy reduction with the negligible per-
formance degradation. Our technique inserts an extra
pipeline stage, called tag lookup stage, between branch
prediction stage and fetch stage. In the tag lookup
stage, tag arrays can be accessed early enough to deter-
mine the way of the data arrays to access, maintaining
performance. The branch prediction accuracy is not de-
teriorated, since the structure of the branch predictor
is not modified in our architecture.

The proposed technique shows negligible perfor-
mance loss in most applications, whereas the previous
way prediction technique severely depends on the ac-
curacy of the dedicated way predictor that is tightly
coupled with application features. From the energy
perspective, our technique saves more energy in the in-
struction cache (data and tag arrays) compared to the
previous technique. When the proposed technique is
combined with more accurate branch predictor such as
[6] is adoped, we can have less than 0.07% performance
degradation and less energy consumption.
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